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Abstract: In the process of conceptual design or structural 
synthesis of mechanisms, an important step is to synthesize 
and sketch various atlases of kinematic chains or graphs. 
An algorithm for sketching generalized kinematic chains is 
proposed based on graph theory and link adjacency 
matrices. And, a computer program is developed for such a 
purpose.  
Keywords: generalized kinematic chains, link adjacency matrix, 
contracted graphs, conceptual design of mechanisms  

I. Introduction 
In early studies, kinematic chains were simply 

enumerated based on intuition or inspiration [1-3]. Started 
in the 1960s, various researchers demonstrated the 
feasibility of synthesizing the kinematic structure of 
mechanisms with closed chains by means of more formal 
methods such as Franke’s notation [4-6], graph theory 
[7-9], Baranov Trusses concept [10-13], and so on. 
However, such methods cannot guarantee to generate all 
kinematic chains or to eliminate isomorphic chains. 
Moreover, being manual methods, they are laborious and 
time-consuming.  

Olson et al. [14] presented a computer-aided synthesis 
process based on graph theory and vertex-edge incidence 
matrices for sketching the closed-loop kinematic chains 
with simple joints. Yan and Hwang [15] proposed an 
algorithm and developed a computer program to sketch 
kinematic chains automatically for the minimization of the 
number of crossing links based on the concepts of basic 
contracted kinematic chains. They further presented an 
approach along with a computer program for the number 
synthesis of kinematic chains with up to 12 links and 
without isomorphic chains based on contracted link 
adjacency matrices and permutation groups [16]. Hwang 
and Hwang [17] proposed the contracted link adjacency 
matrices to represent the topological structure of the 
kinematic chains, and an approach was presented for the 
computer-aided structural synthesis of planar kinematic 
chains with simple joints. Moreover, a computer program 
was developed to automatically generate the kinematic 
chains. The numbers of kinematic chains with up to 
thirteen links were listed. Belfiore and Pennestri [18] 
presented a sketching procedure for obtaining kinematic 
chains with up to 10 links based on graph embedding 
methods. Tuttle [19] developed a computer program to 
generate and enumerate planar, non-fractionated, 
pin-jointed closed kinematic chains with 2-6 independent  
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loops based on the finite symmetry group theory. Ding et al. 
[20-23] developed a fully-automatic computer program to 
synthesize the kinematic chains with different DOFs based 
on the characteristic representation code, the rigid 
sub-chain detection and isomorphism identification 
method. Hsieh et al. [24] proposed a procedure for the 
structural synthesis of generalized kinematic chains with 
simple joints and without any cut-links (or cut-joints) by 
utilizing the contracted link adjacency matrices and the 
multiple link adjacency matrices.  

Yan and Chiu [25, 26] proposed algorithms for the 
construction of generalized kinematic chains without 
cut-links and nonplanar chains based on graph theory, 
multiple link adjacency matrices, and concept of 
Kuratowski graphs. Accordingly, the present study extends 
the method proposed in [25, 26] and implements it into a 
computer code to sketch the various atlases of generalized 
kinematic chains with simple joints. 

II. Terminology and Definitions
For the arguments presented in this paper, the following

terminology and definitions are needed. 
A. LAM and MLAM 

The LAM (link adjacency matrix) of a generalized 
kinematic chain with NL links and NJ joints is an NL×NL 
matrix with its elements eij=1 if link i is adjacent to link j, 
and eij=0 otherwise. For the (8, 10) generalized kinematic 
chain shown in Fig. 1(a), its LAM, is: 

Fig. 1 An (8, 10) generalized kinematic chain, and its 
corresponding planar block and contracted graph 

(8,10)

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0
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The MLAM (multiple link adjacency matrix) of a 
generalized kinematic chain with Nm multiple links and NJ 
joints is an Nm×Nm matrix with its elements eij=n1n2n3…nx 
if multiple link i is adjacent to multiple link j with n series 
joints and x is the number of different types of contracted 
links, and eij=0 otherwise. Therefore, the dimension of the 
MLAM depends on the number of multiple links. For the (8, 
10) generalized kinematic chin shown in Fig. 1(a), its
MLAM is: 

0 31 1 0
31 0 0 1
1 0 0 31
0 1 31 0

 
 
 =
 
 
 

MLAM

in which elements e12=e21=31 mean that one contracted 
link with three series joints (SJ3) and one contracted link 
with one series joint (SJ1) are adjacent to two ternary links. 
B. Link Assortments and Multiple Link Assortments 

The AL (link assortment) of a generalized kinematic 
chain is the type and the number of links in the chain. It is a 
set of numbers consisting of the numbers of binary links 
(NL2), ternary links (NL3), quaternary links (NL4), etc., and 
is expressed as: AL=[NL2/NL3/NL4/…/NLm/…]. The AML 
(multiple link assortments) of a generalized kinematic 
chain is the number and the type of multiple links in the 
chain. It is a set of numbers consisting of the numbers of 
ternary links (NL3), quaternary links (NL4), …, n links (NLm), 
and son on, and is expressed as: AML=[NL3/NL4/…/NLm/…]. 
The atlas of various generalized kinematic chains can be 
synthesized by assembling the corresponding link 
assortments and multiple link assortments. 

The link assortments and multiple link assortments can 
be obtained by solving the following two equations: 

2 3 ... ...L L Ln Lm LN N N N N+ + + + + =    (1) 

2 32 3 ... ... 2L L Ln Lm JN N nN mN N+ + + + + =    (2) 
where m is the maximum number of joints incident to a 
link. Moreover, the number of joints NJ is constrained by 
the following equation: 

( 1) / 2L J L LN N N N≤ ≤ −         (3) 
The maximum value, mmax, can be obtained by the 

following expression:  

max
2 if 2 3

1          if 2 3 ( 1) / 2
J L L J L

L L J L L

N N N N N
m

N N N N N
− + ≤ ≤ −

=  − − ≤ ≤ −
(4) 

According to Eqs. (1)-(4), all possible multiple link 
assortments of the generalized kinematic chains can be 
obtained. 

For the (8, 10) generalized kinematic chain shown in Fig. 
1(a), NL= 8 and NJ= 10, based on Eq. (4), mmax is: 

max 2 4= − + =J Lm N N  

Therefore, Eqs. (1) and (2) become: 

2 3 4 8+ + =L L LN N N  

2 3 42 3 4 20+ + =L L LN N N

By solving these two equations, the link assortments are 
[4/4/0], [5/2/1], [6/0/2], and the multiple link assortment 

are [4/0], [2/1], [0/2]. 
C. Blocks and Planar Blocks 

A block is a graph and a maximal non-separable 
subgraph which is connected, nontrivial, and without any 
cut-vertex. It is also called a 2-connected graph or 
non-separable graph. In addition, a planar block is a block 
which can be drawn in the plane with no edge crossings. A 
planar block with i vertices and j edges is called a (i, j) 
planar block. For example, the graph shown in Fig. 1(b) is 
an (8, 10) planar block. 
D. Loops 

In graph theory, a loop, L, is a closed walk in which the 
initial and end vertices are the same. For any graphs, G, 
with V vertices and E edge, the number of loops can be 
obtained by solving the following equation: 

1L E V= − +            (5) 
For the (8, 10) planar block shown in Fig. 1(b), Loop 1 

(L1) consists of vertices 1, 5, 6, 2, Loop 2 (L2)consists of 
vertices 1, 2, 4, 3, and Loop 3 (L3) consists of vertices 3, 4, 
8, 7. 
E. Contracted Graphs and Basic Contracted Graphs 

A contracted graph is a graph comprising only vertices 
with more than two degrees (binary vertices) and is 
obtained by contracting all binary vertices until no binary 
vertices exist in the graph. For example, the (8, 10) planar 
block shown in Fig. 1(b), its corresponding contracted 
graph is shown in Fig. 1(c). 

A basic contracted graph is a graph which consists of 
multiple vertices (links), i.e., ternary vertices (links), 
quaternary vertices (links), and so forth. The basic 
contracted graphs can be obtained by contracting binary 
vertices (links) until no binary vertices (links). The atlas of 
basic contracted graphs with up to five loops were 
presented by Tempea [27], then Yan and Hwang [2] 
obtained 19 basic contracted graphs with up to five loops. 
Based on the numbers of loops, Eq. (5), and its multiple 
link assortments in Section 2.2, the basic contracted graphs 
are constructed and classified. Therefore, the basic 
contracted graphs with two to four loops are presented in 
Fig. 2 and those with five loops are in References [27, 2]. 
This is the data bank for the sketching of the generalized 
kinematic chains and planar blocks. For example, the (8, 
10) generalized kinematic chain as shown in Fig. 1(a), the
corresponding basic contracted graph is shown in Fig. 
2(c2). It is synthesized by contracting binary vertices 5, 6 
and 7, 8. 
F. Line Graphs and Hypergraphs 

A hypergraph is a pair of sets (v, y) in which v is a set of 
elements called vertices and y is a nonempty set of 
elements called hyperedges. Furthermore, it is a graph in 
which hyperedges may connect more than two vertices and 
no two hyperedges consist of the same set of vertices. 
Hypergraphs are drawn by representing each hyperedge as 
a closed curve containing its vertices.  

For a graph G, its line graph GL has the edges of graph G 
as its vertex set. The two vertices V1 and V2 of GL are 
adjacent when each edge of graph G is the set consisting of 
the two vertices that it joins. The intersection V1 V2 is a 
singleton. In other words, vertices V1 and V2 of GL are 
joined by an edge in GL if edges E1 and E2 of G are incident 
with just one common vertex of G. For the (8, 10) planar 



block shown in Fig. 1(b), its corresponding hypergraph and 
line graph are shown in Figs. 3(a) and (b), respectively. 

Fig. 2 Basic contracted graphs with up to four loops 

Fig. 3 An (8, 10) hypergraph and line graph 

III. Synthesis of LAM
In order to sketch the generalized kinematic chains, an 

algorithm for the synthesis of link adjacency matrix (LAM) 
is proposed. The LAM can be obtained by transforming the 
multiple link adjacency matrix (MLAM). Besides, the 
MLAM synthesis procedure and constraints are proposed 
by Yan and Chiu [26]. The algorithm for the synthesis of 
LAM is shown in Fig. 4 and the main steps are described as 
follows: 
Step 1. Input an MLAM and set initial values Dim and 
NewDim 

Since the MLAM and LAM are both symmetric matrices, 
the LAM can be synthesized by calculating the elements of 
either the upper triangular matrix or the lower triangular 
matrix. Each element of the upper triangular MLAM should 
be inputted. In addition, the value Dim is the dimension of 

the MLAM and is a constant. The value NewDim is a 
variable. The meaning of the value NewDim is to expand 
the dimension of the matrix. The element eij of MLAM is 
imported to perform the next step. 
Step 2. Calculate LAM[i, j] and LAM[j, i] 

The values x and eij can be obtained based on the 
following equations: 

/10 10ij ijx e e= − ×     (6) 
/10ij ije e=     (7) 

where eij is the element of the MLAM[i, j] and the value 
eij/10 must be an integer. The purpose of Eq. (6) is to save 
the element of the last digit, i.e., the one before the decimal 
point. The meaning of the value x is to find out the 
adjacency relationship of the contracted links. The purpose 
of Eq. (7) is to save the remaining digits. It means to save 
the other types of contracted links in the chain. If the value 
x=0, i.e., there are no relationship between link i and link j; 
then, go back to Step 1 and perform another element. If the 
value x=1, i.e., link i is adjacent to link j. Then, LAM[i, 
j]=LAM[j, i]=1. Otherwise, go to Step 3. 
Step 3. Calculate LAM[NewDim+1, i] and LAM[i, 
NewDim+1] 

Since the value x≠1, LAM[NewDim+1, i]=LAM[i, 
NewDim+1]=1. If the value, x-2>0 and value k=1, go to 
Step 4. Otherwise, go to Step 5.  
Step 4. Calculate LAM[NewDim+k, NewDim+k+1] and 
LAM[NewDim+k+1, NewDim+k] 

If the value k≤x-2, LAM[NewDim+k, NewDim+k+1]= 
LAM[NewDim+k+1, NewDim+k]=1. Then, the new value 
k=k+1, and repeat this step again. If no, go to Step 5. 
Step 5. Calculate LAM[NewDim+x-1, j] and LAM[j, 
NewDim+x-1] 

Since the value x-2≤0 or k>x-2, LAM[NewDim+x-1, 
j]=LAM[j, NewDim+x-1]=1. Then, the new value 
NewDim=NewDim+x-1 and go back to Step 2. Once all 
elements are determined, the LAM can be obtained and 
saved.  

The purpose of Steps 3 and 5 are to obtain the 
relationship between the binary links and multiple links. 
The purpose of Step 4 is to obtain the relationship between 
two binary links. Through LAM synthesis algorithm, the 
LAM can be synthesized and obtained. 

IV. Generalized Kinematic Chains and Planar Blocks
Since the early 1960s, graph theory has been applied to 

the number and structural synthesis and analysis of various 
types of chains and mechanisms. Based on Reference [28], 
a planar block can be transformed into its corresponding 
generalized kinematic chains by representing the vertices 
and edges of the planar blocks with links and joints, 
respectively, in which two links in the chain are adjacent 
whenever the corresponding vertices in the graph are 
adjacent. For a given planar block, the following process 
describes how to construct the corresponding generalized 
kinematic chain based on graph theory:  



Dim = NewDim = dimension of MLAM
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Fig. 4 Synthesis algorithm of LAMs

Step 1. For each vertex, list those edges incident with the 
vertex.  

Step 2. Construct the corresponding line graphs GL 
described in Section II-F.  

Step 3. Replace each vertex of GL with a small circle and 
replace each complete subgraph of GL which is 
determined by a vertex of a planar block of degree 
at least three by a shaded polygon. This is done by 
removing the interior edges to obtain a perimeter 
polygon and then shading the interior of this 
polygon.  

Each planar block has a single associated generalized 
kinematic chain and every generalized kinematic chain 
constructs a single planar block.  

V. Sketching Algorithm 
An algorithm for sketching nice looking generalized 

kinematic chins is proposed based on its corresponding 
LAM and graph theory, as shown in Fig. 5, and each step is 
illustrated with an example. 

Fig. 5 Sketching algorithm 

Step 1. Link adjacency matrix 
The LAM of a generalized kinematic chain is the input 

data. Based on the LAM synthesis algorithm in previous 
section, the LAM can be determined. 

The (8, 10) generalized kinematic chain is used as an 
illustrative example.  
Step 2. Basic contracted graphs 

Based on the multiple link assortments and the number 



of loops, the basic contracted graphs can be identified from 
Fig. 2. Based on Eq. (5), the number of loops is three. Since 
the multiple link assortment AML=[4/0], there are four 
ternary vertices in the graph. Therefore, the basic 
contracted graph with three loops and four ternary vertices 
can be obtained from Figs. 2(c1) and (c2). 
Step 3. Labelled graphs 

Based on the LAM, binary vertices need to be added to 
the edges of its basic contracted graph. Then, vertices x and 
y are connected by an edge which are adjacent to each 
other based on its LAM. Thus, the labelled planar graphs 
can be obtained.  

Based on the LAM, each ternary vertex is adjacent to two 
ternary vertices. Therefore, the basic contracted graph 
shown in Fig. 2(c2) is selected to synthesize the (8, 10) 
generalized kinematic chains.  

The ternary vertices can be labelled as “1”, “2”, “3”, and 
“4” in the basic contracted graphs as shown in Fig. 6(a). 
Then, binary vertices must be added in the graph shown in 
Fig. 6(b). Binary vertices 5 and 6 should be added between 
vertices 1, 2, and connected the vertices 1, 5, 6, 2 by edges 
based on the LAM(8, 10). Binary vertices 7 and 8 should be 
added between vertices 3, 4, and connected the vertices 3, 
7, 8, 4 by edges based on the LAM(8, 10). Then, the labelled 
graph with eight vertices and ten edges can be obtained as 
shown in Fig. 6(b). 

Fig 6. Labelled graphs with eight vertices and ten edges 

Step 4. Atlas of planar blocks 
Based on the labelled graphs obtained in Step 3, the 

maximum external loop can be determined. The outer 
circle should be deleted. Then, the planar blocks should be 
redrawn and the atlas of planar blocks can be obtained.  

For the (8, 10) labelled graph shown in Fig. 6(b), the 
maximum external loop consists of vertices 1, 5, 6, 2, 4, 8, 
7, 3. Since there are eight vertices in the external loop, this 
is an octagon. Therefore, the graph is redrawn, and the (8, 
10) planar block can be obtained as shown in Fig. 1(b).
Step 5. Atlas of generalized kinematic chains 

Each planar block can be transformed into a single 
generalized kinematic chain based on the atlas of planar 
blocks obtained in Step 4 and graph theory. In addition, a 
generalized kinematic chain can be transformed from its 
corresponding planar block based on the proposed method 
in Section 4.  

For the (8, 10) planar block shown in Fig. 1(b), the 
generalized kinematic chain can be obtained as shown in 
Fig. 1(a). 

Based on the proposed sketching algorithm, the 
aesthetic characteristics of generalized kinematic chains 
and planar blocks with no link or edge crossings can be 
sketched and obtained. 

VI. Computer Program
The sketching algorithm and proposed algorithms in 

References [25, 26] are implemented into a computer 
program in order to facilitate the automatic sketching of 
generalized kinematic chains and planar blocks. This 
computer program is developed by using Microsoft Visual 
Studio 2012 with programming language C# running on 
the Windows Platform. The program is executed on a PC 
with an Intel ® Core™ i7-3770 CPU 3.40GHz processor 
and 8GB RAM. Given only the numbers of links and joints 
as the input data, the program automatically computes the 
link assortments and contracted link assortments, and 
sketch generalized kinematic chains and planar blocks. 
Furthermore, the computer program has up to 20 functions 
in the user interface as shown in Fig. 7. The atlases of 
generalized kinematic chains and planar blocks are shown 
in the middle of interface. An example is provided to 
illustrate the computer program for the construction of 
generalized kinematic chains with different numbers of 
links and joints. 

Fig. 7 User interface of the computer program 

Example: Atlas of (8, 10) generalized kinematic chains 
When the parameters are given as Links=8 and 

Joints=10, the link assortments are AL=[4/4/0], [5/2/1], and 
[6/0/2]. The atlas of (8, 10) generalized kinematic chains 
and can be obtained shown in Fig. 8. Therefore, the atlases 
of (8, 10) generalized kinematic chains can be synthesized 
and sketched automatically according to the developed 
computer program. And, the number of the atlases of (8, 10) 
generalized kinematic chains is 40. 

Fig. 8 Atlas of (8, 10) generalized kinematic chains 



VII. Conclusions
An algorithm for the sketching of generalized kinematic 

chains is proposed based on the concepts of the link 
adjacency matrices and the basic contracted graphs. A 
computer program is developed for automating the 
synthesis and sketching of various atlases of generalized 
kinematic chains and planar blocks based on the proposed 
algorithms. Through the computer program, generalized 
kinematic chains with simple joints and no crossing links 
are obtained. An important feature for adjusting to have a 
nice looking generalized kinematic chain is achieved based 
on the identification of the maximum external loop to turn 
inside out of the chain. As a result, the synthesized atlases 
of generalized kinematic chains with required numbers of 
links and joints provide mechanism designers the 
necessary data bank for the generation of all possible 
topological structures in the conceptual stage of 
mechanism design. 
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